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In this paper, we propose a novel conception: object-centric keypoint detection | @A shot-cut reference for the distinctness between the red and green points
and description, in contrast to the conventional scene-centric setting. To be i i Cw . which is NOT what we desire. So we render the cup according to its pose in
specific, it contains three main contributions: @\ Descriptors |1 and remove all other things, leading to image 10. We perform contrastive

____________________ learning by further taking the positive from 10 into account.

« We are the first to raise the notion of object-centric keypoint detection and o : |

description, which better suits the object-level tasks:; Encoder 1y - 5 nommatiation
* We develop a novel sim2real training method, which enforces uncertainty, In contrast to R2D2, there are two subparts of each description vector, one for

intra-object salience/inter-object distinctness, and semantic consistency; intra-object salience, and the other one for inter-object distinctness.
 Experiments on image matching and 6D pose estimation verify the

encouraging generalization ability of our method from simulation to reality. » Contrastive learning with uncertainty Experiments
Background ' ‘ d{ VZ Comprehensive experiments on image matching and 6D pose estimation

verify the encouraging generalization ability of our method from simulation

Keypoint detection and description play a central role in computer vision. Most to reality. Particularly for 6D pose estimation, our method significantly
existing methods are initially targeted on image-level/scene-centric tasks, View! View?2 ;

View | View 2 outperforms typical unsupervised/sim2real methods.
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making them less adaptive for other more fine-grained problems, e.g., object-
level matching or pose estimation.
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unwanted points located in the background that share a similar local texture with E g
the object CAD model. » Disentangled descriptor learning t t t tis
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Synthetic-real image matching results

Inter-object Method Dim Kpts MMAS MMA7
Distinetness SIFT 128 169 242%  30.1%

Intra-object
Salience

Superpoint 256 157 33.6%  43.8%
z R2D2 128 200 34.8% 44.6%
2 DISK 128 158 282%  35.1%
Scene-centric Object-centric g
J Ours 96 92.1 50.0% 57.2%

Beyond keypoint detection and description, the proposed object-centric formula-
tion further teaches the algorithm to identify which object each keypoint belongs

to. Figure. 1 depicts that the object-centric method accurately predicts the e : S : = [imcs oo
object correspondence (different colors) and matches the keypoints on different ® query (dy) @ positive (dF,dg) ® negative (d) mustard bottle | 88.2 737 | 37 | 728

Weak/unsupervised 6D pose estimation
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objects between the scene image and the CAD model. The middle and bottom rows denote the synthetic scenes from two mug 43.4 } 239 | 00 | 457
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different viewpoints. The top line renders the object with a clean ‘;LLd" | 4;6 |2;9‘ T 5a
O th d background at view 1. We decouple the descriptor into two parts for
ur metno learning the intra-object salience (first column) and the inter-object | | |
- distinctness (second Column). Matching evaluation on unseen objects
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Given an input image, the detector outputs a non-negative confidence map, M — (%) e W e
. . . . ' . . s LD L.J70 | . £7.0%0
denoted as sigma, called a repeatability map in R2D2. If a pixel's confidence is 1 R2D2 | 212 613% | 16.1 493%

M
Inter-object distinctness Ly (I, I,) = - ZLC( zl,dz;c,]]yz,—c) Ours | 905 654% | 759 613% . . “ A,

i=1 Keypoint matching of unseen object

above a certain threshold, it will be considered a keypoint.
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